Rational cubic spirals
نویسندگان
چکیده
We consider the problem of finding parametric rational Bézier cubic spirals (planar curves of monotonic curvature) that interpolate end conditions consisting of positions, tangents and curvatures. Rational cubics give more design flexibility than polynomial cubics for creating spirals, making them suitable for many applications. The problem is formulated to enable the numerical robustness and efficiency of the solutionalgorithm which is presented and analyzed. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
A rational cubic trigonometric approximation scheme of the generalized Cornu spirals
The [Formula: see text] and [Formula: see text]-approximation schemes are introduced to approximate the popular generalized Cornu spirals with the help of the parametric rational cubic trigonometric Bézier curves. The [Formula: see text]-approximation scheme has two free parameters whereas [Formula: see text]-approximation scheme has four free parameters. To approximate the generalized Cornu sp...
متن کاملInteractive Shape Preserving Interpolation by T-conic Spiral Spline
A T-conic (rational cubic with a quadratic denominator) spiral spline, with shape control parameters, will be discussed with the view to its application in Computer Graphics. An efficient scheme is presented which constructs a curve interpolating a set of given data points and allows subsequent interactive alteration of the shape of the curve by changing the shape control and shape preserving p...
متن کاملConvex Surface Visualization Using Rational Bi- cubic Function
The rational cubic function with three parameters has been extended to rational bi-cubic function to visualize the shape of regular convex surface data. The rational bi-cubic function involves six parameters in each rectangular patch. Data dependent constraints are derived on four of these parameters to visualize the shape of convex surface data while other two are free to refine the shape of s...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملSpiral spline interpolation to a planar spiral
We derive regions for T-cubic and arc/T-cubic spirals to two-point Hermite interpolation in terms of unit tangent vectors with help of Mathematica. The use of spirals gives the designer an excellent and speedy control over the shape of curve that is produced because there are no internal curvature maxima, curvature minima, inflection points, loops and cusps in a spiral segment.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer-Aided Design
دوره 40 شماره
صفحات -
تاریخ انتشار 2008